A Simple Proof of Pascal's Hexagon Theorem

Author(s): Jan van Yzeren
Source: The American Mathematical Monthly, Dec., 1993, Vol. 100, No. 10 (Dec., 1993), pp. 930-931

Published by: Taylor \& Francis, Ltd. on behalf of the Mathematical Association of America

Stable URL: https://www.jstor.org/stable/2324214

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

Taylor \& Francis, Ltd. and Mathematical Association of America are collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly

A Simple Proof of Pascal's Hexagon Theorem

Jan van Yzeren

Pascal's Theorem. If the vertices of a hexagon lie on a circle and the three pairs of opposite sides intersect, then the three points of intersection are collinear.

This theorem was published in 1640 by sixteen-year-old Blaise Pascal. His original proof has been lost, and at times one wonders whether one or another of the known proofs is, in fact, Pascal's original one. This also applies to the simple proof given here.

Begin with the hexagon $A_{i}, i=0, \ldots, 5$ of Figure 1, and consider the circle through the points A_{1}, A_{4} and P_{1}, where the first two points are (opposite) vertices, and the last is one of the "Pascal points" connected to them. This circle meets $A_{0} A_{1}$ and $A_{3} A_{4}$ at B_{0} and B_{1} respectively, and one uses arcs of the circles shown to find equal angles inscribed in them (or supplementary angles inscribed in opposite arcs). As a consequence, the triangles $P_{1} B_{0} B_{1}$ and $P_{2} A_{0} A_{3}$ have respectively parallel sides, that is, they are perspective from the point P_{0}. Therefore, P_{0}, P_{1} and P_{2} are collinear.

Figure 1
The proof also covers the case of $A_{0} A_{1} \| A_{3} A_{4}$ (i.e., P_{0} at infinity). Then, the triangles are translative, that is, $P_{1} P_{2}$ is parallel with $A_{0} A_{1}$ and $A_{3} A_{4}$. The only special case not covered by the proof concerns hexagons inscribed in a circle with parallels as opposite sides. This case, however, follows easily from appropriate arcs.

Whether Pascal gave this proof is open to debate, but it seems that this proof has not turned up for 350 years. On this point Professor Coxeter kindly has commented as follows: "It is indeed remarkable that this elegant proof was not
found in 350 years, and also somewhat remarkable that Guggenheimer came close to it in 1967 and then felt obliged to introduce a peculiar lemma." [3]

Anyway, the historic delay justifies some special attention for the heuristics of this simple proof.

The basic figure consists of two pencils of four lines joining points on a circle, viz. (Figure 2) A_{0} and A_{4} with, respectively, A_{1}, A_{2}, A_{3} and A_{5}.

Figure 2
Evidently, the two pencils are congruent (equal angles between corresponding lines). Therefore, if $\triangle A_{0} A_{2} Q$ is made similar to $\triangle A_{4} A_{2} A_{1}$, the segments $A_{2} Q$ and $A_{2} A_{1}$ are divided proportionally and $A_{1} A_{0} / / P_{1} R / / S T$. Now, the crucial idea is to build up this basic figure in a converse manner, starting with two given similar triangles: $\triangle A_{0} A_{2} Q \sim \triangle A_{4} A_{2} A_{1}$ and forgetting the circle.

Then, choose P_{1} and R on, respectively, $A_{1} A_{2}$ and $Q A_{2}$, such that $P_{1} R / / A_{1} A_{0}$. Similarly S and T. Hereupon the following points are defined: $A_{5}=A_{4} P_{1} \cap A_{0} R$, $A_{3}=A_{4} S \cap A_{0} T, P_{0}=A_{4} S \cap A_{0} A_{1}, P_{2}=A_{0} R \cap A_{2} A_{3}$.

To prove that P_{0}, P_{1} and P_{2} are collinear:
Consider $\triangle R A_{0} U, R U / / P_{2} A_{3}$, and its translative image $\triangle P_{1} B_{0} B_{1}$. Then, B_{0} lies on $P_{0} A_{0}$ as $P_{0} A_{0} / / P_{1} R$, and B_{1} lies on $P_{0} A_{3}$, because $P_{1} B_{1}=R U=A_{2} A_{3}$. $R T / A_{2} T=A_{2} A_{3} \cdot P_{1} S / A_{2} S$. Therefore, the triangles $P_{1} B_{0} B_{1}$ and $P_{2} A_{0} A_{3}$ are perspective from the point P_{0} and, indeed, P_{0}, P_{1} and P_{2} are collinear.

Afterwards the crucial points B_{0} and B_{1} can be found directly. In fact, they lie on the circumcircle of $\triangle P_{1} A_{1} A_{4}$, because $\angle P_{1} B_{0} A_{1}=\angle A_{5} A_{0} A_{1}=\angle A_{5} A_{4} A_{1}$ $=\angle P_{1} A_{4} A_{1}$ and $\angle A_{4} B_{1} B_{0}=\angle A_{4} A_{3} A_{0}=\angle A_{4} A_{1} A_{0}=\angle A_{4} A_{1} B_{0}$. Actually, drawing the circumcircle of $\triangle P_{1} A_{1} A_{4}$ is the very point of the new proof.

Background of the heuristics is the fact that the metric of the Euclidean plane can be defined by giving a pair of similar triangles. After that, all other metric properties must follow by means of parallels and proportionalities (affine tools).

REFERENCES

1. H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, New Mathematical Library, Random House and The L. W. Singer Company, 1967.
2. H. S. M. Coxeter, The Real Projective Plane (2nd ed.), Cambridge University Press, 1961.
3. H. W. Guggenheimer, Plane Geometry and Its Groups, Holden Day Inc., Cambridge, 1967.
4. R. A. Johnson, Advanced Euclidean Geometry, Dover Publications, New York, 1960.
5. N. A. Court, College Geometry, Barnes \& Noble, New York, 1959.

Department of Mathematics

Technological University Eindhoven
The Netherlands, 5600 MB

