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The  Wonderful  Gift  of  Mathematics 
Anderson  Norton  

This theoretical analysis addresses “the unreasonable effectiveness of 
mathematics in the natural sciences” (Wigner, 1960). For example, 
how is it that ellipses—constructed by Greek geometers nearly two 
millennia before Kepler used them—provide such precise models for 
describing planetary motion? Historical models of gravity and 
planetary motion frame arguments on the nature of mathematics, 
particularly the characterization of mathematics as the objectification 
of action. This characterization helps explain the effectiveness of 
mathematics while distinguishing mathematics from other disciplines.   

“How can it be that mathematics, a product of human thought, 
independent of experience, is so admirably adapted to the 
objects of reality?” Albert Einstein (p. 464, in Kline, 1959) 

 
By 200 BC, Greek mathematicians had constructed conic 

sections and investigated many of their properties. Beyond 
lines and circles, these constructions included parabolas, 
ellipses, and hyperbolas, which had no practical application at 
the time (Kline, 1959). How is it, then, that conic sections 
provided models for projectile and planetary motion two 
millennia later, and with uncanny precision? This is just one 
example of the “unreasonable effectiveness of mathematics in 
the natural sciences” (Wigner, 1960), which has marveled 
scientists for centuries. Wigner attributed this unreasonable 
effectiveness to the empirical law of epistemology: “The 
miracle of the appropriateness of the language of mathematics 
for the formulation of the laws of physics is a wonderful gift 
which we neither understand nor deserve” (p. 8). 

In this paper, I argue that, although mathematics is a 
product of human thought, it is not independent of experience. 
The main purpose of the paper is to characterize mathematics 
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as a human activity distinct from (other) languages and 
sciences. In particular, people create mathematics through the 
objectification of action so that actions at one level become 
objects for us to act upon at another level. This characterization 
helps explain why mathematics is so effective in modeling our 
experiences in the world, and at predicting new phenomena. 
Several examples are provided to demonstrate the effectiveness 
of objectifying action, but the primary example pertains to 
modeling planetary motion. The paper sequences arguments in 
the following way:  

 
1. Tracing the history of mathematical models for planetary 

motion demonstrates that, despite perpetual (and 
sometimes radical) revision of underlying physical 
principles, the mathematics used to model and extend 
these principles never comes into question. 

 
2. The consistency of mathematics in the face of paradigm 

shifts in science can be explained in terms of mental 
actions, which produce mathematical objects. 

 
3. Research in mathematics education buttresses this 

claim, which in turn, has clear implications for 
mathematics education. 

 
Elliptical Orbits: A Brief History 

 
On July 4th, 2012, two independent teams of physicists 

announced they had found empirical evidence for the Higgs 
boson—a subatomic particle whose existence had been 
predicted by British scientist Peter Higgs (Cho, 2012). Up to 
that point, the Higgs boson was only a theoretical particle—a 
logical-mathematical consequence of the Standard Model of 
physics. The fact that a sequence of mathematical computations 
could predict the existence of a particle with precisely 
described properties is remarkable (some might say 
unreasonable), but similar examples abound throughout the 
history of science. As we will see, mathematical models have 
even predicted the existence of very large objects, such as 
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Neptune (Darling, 2006). In a sense, Neptune was invented 
before it was discovered, and that invention began two 
millennia ago, in ancient Greece. 

Plato (427-347 BC) established three simple rules for 
geometric construction: A straightedge can be used to construct 
a line passing through two given points, a compass can be used 
to construct a circle centered at one given point and passing 
through another given point, and the intersections of 
lines/circles define new points. Greek geometers—most 
notably, Apollonius—demonstrated that, by following these 
rules, they could construct parabolas, ellipses, and hyperbolas. 
For example, an ellipse can be constructed as the set of all 
points whose sum of distances from two given points is fixed. 
The construction, following Plato’s rules, is illustrated in 
Figure 1. 

 

 
Figure 1. Construction of an Ellipse. 

 
Given points O and P, and radius r, consider the circle 

centered at O with radius r. Starting from O, we need to 
determine where we can cut radius r so that the remaining 
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length is equal to the distance from the cut point to P. This will 
ensure that that sum of distances from the cut point to O and P 
is r, thus giving us a point on the ellipse. We can find the 
appropriate point by taking the perpendicular bisector of the 
base of what-we-know-must-be an isosceles triangle. This 
construction relies on the fact that the third point on an 
isosceles triangle lies on the perpendicular bisector of its base. 
We can generate the ellipse as the locus of all such points, as 
the direction of the radius is changed.  

Before this geometric construction, Greek experiences with 
ellipses were limited to slicing cones (note that the Greek word 
konos refers to actual pine cones) and observing their cross 
sections, or to the perception of a circle when viewed from an 
oblique angle (when looking at a circular object from askew, 
the planar projection appears elliptical) (Darling, 2006). After 
the construction, Greek geometers could investigate properties 
of the ellipse involving their focal points. In addition to the 
focal point property used in the construction, these include the 
property that a ray of light emanating from one focal point will 
reflect off of the ellipse in the direction of the second focal 
point. However, over the hundreds of years that the ancient 
Greeks investigated the ellipse, they never considered that they 
might be riding on one. 

Galileo was not the first to suggest a heliocentric view of 
the heavens (nor was Copernicus), but until his time (1564-
1642) people generally accepted that the Earth stood at the 
center of the universe (Darling, 2006). Greek philosophy and 
Christian theology perpetuated this view even in the face of 
strange observations, especially on occasions of apparent 
backward motion (retrograde) of a planet. Ironically, it was 
Apollonius—the principle contributor to the study of conic 
sections—who first suggested that these anomalies could be 
explained by epicycles, thus delaying the need for elliptical 
paths. The use of epicycles (circular paths centered on the 
circular orbits of planets around the Earth) persisted until 
Tycho Brahe’s detailed observations of Mars, and Kepler’s use 
of those observations, led to a new mathematical model for 
planetary motion—a model too simple to deny.  
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By 1614, Kepler had guessed at the elliptical orbit of Earth 
based on empirical data on the position of the Sun and Mars at 
various times (Darling, 2006). He soon developed this guess 
into what we now call Kepler’s first law: Planets move in 
elliptical orbits, with the Sun at one focal point. Only later (in 
1687) did Newton demonstrate that elliptical orbits were a 
mathematical consequence of the inverse square law for 
gravitational force. Once we accept the inverse square law—
that the force of gravity between two objects (say the Sun and 
the Earth) reduces in proportion to the square of the distance 
between their centers of mass—the elliptical orbits of planets 
can be calculated with great precision. Figure 2 illustrates how 
Newton argued that the latter mathematically follows from the 
former.  

Figure 2. The inverse square law and the ellipse. 
 

Newton’s approach depended heavily on Kepler’s second 
law, which states that the radii of planets (from the Sun) sweep 
out equal areas in equal time. Because this property was 
already known for circular orbits, Kepler actually produced this 
law before his first law. The second law can be derived for any 
orbit in which there is only one attracting force, regardless of 
whether that force obeys the inverse square law. This can be 
seen in Figure 2 by considering the movement of Earth from 
E0 to E1 and then from E1 to E2.  

If V1 represents the first movement and if this velocity 
were to persist for the next time interval, Earth would move 
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from E1 to E2’. However, the inward force toward the Sun (S) 
causes Earth to fall by some distance, represented by the thick 
segment from E1, which is also represented, in parallel, from 
E2’ to E2. Thus, Earth travels from E1 to E2 instead. Kepler’s 
second law follows from the fact that the areas of bottom 
triangle (S-E0-E1) and middle triangle (S-E1-E2) are 
equivalent. This is easiest to see when considering the common 
base S-E1, from which the two triangles also have common 
heights (namely, the component of V1 perpendicular to the 
base). 

From there, Newton argued that (the magnitudes of) 
changes in velocity (represented by E2’-E2 and E3’-E3) are 
constant with respect to the internal angles (at S), rather than 
time. This is where the inverse square law becomes important. 
Briefly, Kepler’s second law shows that any change in time is 
proportional to area swept out by the orbit (½ r2sinθ), so that 
the product of 1/ r2 and this change in time is a function of θ. 
Because this product represents the change in velocity 
(acceleration multiplied by elapsed time), the change in 
velocity is constant for equal angles. As these angles become 
smaller, the changes in velocity sweep out a circle (see Figure 
3). Finally, from the circular map of velocities, we 
geometrically derive the elliptical orbit: Find the curve for 
which the given velocities (v0, v1, v2, and v3) correspond to 
the given directions of Earth’s position relative to the Sun 
(along e0, e1, e2, and e3). Note that, as θ becomes smaller, the 
secants in the velocity map become tangent to the circle. But 
these changes in velocity should be pointed inward toward the 
Sun (S). Thus, the velocity map is rotated 90 degrees from the 
position map, and solutions should resemble the construction in 
Figure 1. A more thorough explanation can be found in 
Feynman’s Lost Lecture (Goodstein & Goodstein, 1996). 

In the history of the ellipse, we have a geometric object, 
constructed in pursuit of intellectual curiosity, later used to 
precisely model planetary motion, which, still later, was 
mathematically justified based on a physical principle. This 
example would provide a beautiful testimony to the simplicity 
of the universe and its language of mathematics, but the story 
does not end there. 
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Figure 3. Mapping the Velocities at various points in Earth’s 
Orbit. 
 

In the middle of the 19th century, astronomers were 
perplexed by the motion of Uranus, which was the newest of 
the seven known planets, along with Mercury, Venus, Earth, 
Mars, Jupiter, and Saturn (Darling, 2006). They were already 
aware that, due to the fact that the Sun was not the only source 
of gravitational attraction (the three body problem), the planets 
did not, in fact, move in perfectly elliptical orbits. Since 
Newton’s work, the inverse square law and its mathematical 
consequences had become primary, taking the place of 
Kepler’s ellipses, which were a consequence of this law when 
there were only two bodies to be considered. Thus, the simple 
truth of elliptical motion was broken almost as soon as it was 
posited. Based on Newton’s laws and the deviation of Uranus’ 
path (from that of an ellipse), physicists hypothesized the 
existence of an eighth planet whose gravitational attraction 
would explain the deviation. In fact, they mathematically 
calculated the path and location of that planet, which in 1846 
was observed in precisely the place where mathematical 
calculations determined it should be. 

We might say that Neptune’s discovery was a 
mathematical one, rather than an astronomical one. Neptune 
provided another testimony to the mathematical truth and 
universal simplicity, this time regarding Newton’s inverse 
square law. However, the simplicity of Newton’s law barely 
outlasted that of elliptical orbits. When astronomers noted 
similar deviations in the planetary motion of Mercury, they 
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posited a similar solution—the existence of a third body, the 
planet “Vulcan,” orbiting close to the Sun (Darling, 2006). 
Alas, no such planet exists. Rather, the inverse square law 
ultimately took the blame, and the simple exponent in 
Newton’s 1/r2 relation was replaced by the crude value of 
2.00000016. A few decades later, Newtonian physics would be 
replaced altogether by Einstein’s general theory of relativity. 

The simplicity of Newton’s physics, and the precision of 
mathematical models based on his laws, cannot be explained 
by a fundamental accord with the universe. General relativity 
superseded Newtonian physics because it provided still greater 
precision while explaining phenomena that Newton could not. 
In particular, Newton admitted that his theory lacked an 
explanation for how gravity between two masses 
communicated itself. General relativity has contributed to a 
partial explanation in the form of another uncanny prediction—
the existence of the Higgs boson. Despite the precision of this 
prediction, should we be surprised when the underlying model, 
yet again, falls short? Or when the next predication fails, 
should we instead blame the mathematical calculations that 
generate the prediction?  

 
Finding Reason 

 
Mathematicians, scientists, and philosophers have offered 

various explanations for the effectiveness of mathematics in 
predicting physical phenomena. Computer scientist Richard 
Hamming (1980) suggested four “partial explanations”; among 
these, “we select the mathematics to fit the situation” (p. 89). 
This was the case for Kepler who selected an ellipse as a curve 
of best fit for the data Brahe had provided. This curve was 
available to him because the Greeks had constructed it with 
three parameters (two focal points and a radius). Thus, 
Hamming goes a long way in explaining the uncanny precision 
of mathematical models. However, the unreasonableness goes 
still further when we consider that the Sun lies at one of the 
focal points and when we consider Newton’s contribution. 

Newton demonstrated that Kepler’s model was not just a 
good fit; elliptical orbits were a mathematical consequence of 
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Newton’s inverse square law for the Sun’s gravitational force 
with each planet. On the other hand, because gravitational 
forces between planets also affect their orbits, the inverse 
square law simultaneously implies that the orbits are not 
actually elliptical. Here we find a mathematical model for 
gravity that worked so well it predicted the existence and 
position of a new planet. However, we cannot attribute this 
unreasonable effectiveness to a perfect harmony between 
mathematics and the universe because, as precise as it was, the 
inverse square law failed too under the weight of Einstein’s 
general relativity. Neither can we attribute it to the selection of 
mathematics to fit the situation because Galileo had developed 
the gravitational laws from observations of objects falling near 
the surface of the Earth. Only later did Newton demonstrate 
that these laws generalized and extended to the planets. What 
in the nature of mathematics enables it to generalize models in 
such a way, beyond physical experience? 

Contrary to Einstein’s premise, the story of the ellipse 
teaches us that physical experience does play a role in 
mathematical development. In fact, it plays two key roles: one 
based on physical action, and one due to evolution. Hemming 
(1980) downplayed the role of evolution due to the relatively 
short history of mathematics, but others (e.g., Suppes, 2011) 
have extended the roots of mathematics much further back into 
our evolutionary history. For example, recent studies in 
neuroscience indicate that several species of animals have 
innate abilities to estimate magnitudes, presumably as a 
consequence of evolution and their need to keep track of 
offspring, predators, and prey (Dehaene, 1997). Additionally, it 
is now well established that humans are born with an ability to 
immediately recognize quantities up to 4 (i.e., subitizing; 
Revkin, Piazza, Izard, Cohen, & Dehaene, 2008). Such innate 
abilities demonstrate a primary connection between human 
mathematical ability and the world in which we have evolved. 
In the next section, we consider a characterization of 
mathematics that explains how these worldly roots have kept 
mathematics grounded, even as mathematics has grown 
through its various branches. 
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Mathematics as the Objectification of Action 
 
“Mathematics is the science of acts without things—and 
through this, of things that one can define by acts.”  Paul 
Valéry  (1935, p. 811, in von Glasersfeld, 1992). 
 

When a prediction fails, as it did in the case of the 
imaginary planet Vulcan, physicists question the underlying 
principles of physics rather than the chain of mathematical 
arguments that led from those principles to the prediction. 
Despite Gödel’s (1992/1962) incompleteness theorem, 
numerous paradoxes, and the historically mounting evidence 
against the Greek philosophy of a fundamental accord with the 
universe—despite all of this—mathematics remains “queen of 
the sciences.” As humans attempting to predict and control the 
world we experience, we have no recourse but to rely on 
mathematical models and mathematical arguments resulting 
from those models; in other words, we have no more reliable 
way of reasoning about our experience. Here, I argue that this 
property rests in the characterization of mathematics as the 
objectification of action (see Figure 4). 

 
Figure 4. Mathematics as the Objectification of Action. 

 
The top arrow in Figure 4 represents the actions we 

perform in the world that we experience and the idea that 
“knowing an object means acting upon it” (Piaget, 1970, p. 
15)—a perspective promoted within constructivist and 
embodied cognition frameworks (von Glasersfeld, 1992; 
Campbell, 2010). The bottom arrow represents a process by 
which those actions become objects themselves, thus 
subjecting them to further action (top arrow). Piaget (1970) 
called this process “reflective abstraction,” on which several 
researchers have elaborated: Dubinski through his APOS 
theory (e.g., Dubinsky & Lewin, 1986; Dubinsky, Elterman, & 
Gong, 1988); Steffe (1991) in the case of counting schemes; 
and Simon, Tzur, Heinz, and Kinzel (2004) through their 
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description of activity-effect relations. The underlying idea also 
closely relates to Sfard’s (1994) reification, by which 
operational thinking becomes structural thinking. 

Consider the mathematical object, 8. Although children are 
born with an ability to subitize numbers up to 4 and to estimate 
magnitudes in general, they must construct 8 through activity. 
Steffe (1991) has provided a detailed analysis for how this 
occurs, through coordinated action. This coordination includes 
a one-to-one correspondence between pointing acts and word 
number utterances. As their coordination becomes more 
internalized, the physical actions of pointing and uttering 
dissipate. One consequence of this internalization is that when 
children consider the total of two collections, say 8 and 3, they 
begin to realize the superfluity of counting to 8 before counting 
on 3 more. Through such a progression, 8 becomes an object 
that can be acted upon, as in determining the value of three 8’s.  

Characterizing mathematics as the objectification of action 
explains how, on the one hand, mathematics is grounded in 
experience, and how, on the other, mathematics transcends 
experience. In particular, although mathematical objects are 
derived from actions in the world, once they are objectified, 
they can be acted upon in various ways, including their 
composition. Sometimes these compositions anticipate physical 
actions we could perform (e.g., counting three collections of 
eight objects); other times they form actions that can be carried 
out only in imagination (e.g., reflecting a cube through a plane 
of symmetry).  

In the case of the ellipse, objectification of action begins 
with the construction of lines and circles. Whereas Kant had 
assumed space was an innate concept into which we assimilate 
the shapes we see, Piaget and Inhelder (1967/1948) 
demonstrated how children construct both space and shape, 
largely through haptic experience.  

The abstraction of shape actually involves a complete 
reconstruction of physical space, made on the basis of the 
subject’s own actions and to that extent, based originally 
upon a sensori-motor, and ultimately on a mental, 
representational space determined by the co-ordination of 
these actions (p. 78). 
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Similarly, research from an embodied cognition perspective 
has demonstrated the importance of haptic experience—such as 
feeling a cube—in constructing geometric concepts (Roth, 
2010). 

Piaget and Inhelder (1967/1948) referred to lines and 
circles as “principal perceptual forms” because of the 
immediacy of their connection to physical experience and their 
primacy in constructing other shapes. In particular, lines are 
closely connected to eye movements from one point of fixation 
to another (saccades), with efficient travel from one point to 
another, and with the apparent trajectory of light. Circles arise 
through physical experiences of spinning and swinging objects, 
including oneself. Indeed, the primacy of lines and circles 
explains why Plato based his rules of geometric construction on 
them. 

With lines and circles objectified, we can act on them 
through composition, as Plato prescribed, to construct new 
shapes. Here, composition refers to the construction of points 
of intersection from which to construct new lines and circles. 
The richness of Euclidean geometry (based on Plato’s rules) 
testifies to the utility of objectification; among its products, the 
construction of the ellipse illustrated in Figure 1. With this 
construction, the ellipse—previously a product of slicing 
cones—gained new properties, including focal points and a 
radius. Kepler could then use the focal points and radius as 
parameters in finding a curve of fit best for Earth’s orbit. The 
next step was Newton’s, to demonstrate that the ellipse was 
more than a nicely fitting curve; it was a necessary 
consequence of the inverse square law for gravity and the two-
body problem (the Sun and the Earth, neglecting other masses). 
This, too, relied on the objectification of action. 

Newton’s argument relied on a chain of equalities for 
proportional lengths and areas. Hence, his argument was 
mostly geometric, but included algebraic manipulations as 
well. The history of mathematics indicates that algebra 
involves a particular form of objectified action wherein 
algebraic symbols serve as proxies for mathematical objects, 
and symbolic manipulations serve as proxies for compositions 
of these objectified actions. For example, variables were first 
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treated as unknown numbers defined through a sequence of 
actions (usually additions and proportional scalings) and the 
numerical result of those actions (Burton, 2007). Eventually 
they became objects within equations. Still later, Descartes 
showed how those equations define curves, and in modern 
algebra, functions, groups, and cohomologies, too, are treated 
as objects.  

Recent research in mathematics education also 
characterizes the progression of algebra as the objectification 
of action. For example, work on children’s understanding of 
equal sign (e.g., Knuth, Stephens, McNeil, & Alibali, 2006) 
implies that children typically think about x as the result of 
computation, as in 5+7=x; only later do they begin to think of x 
as an object, through its relation to other objects. In particular, 
Hackenberg and Lee (2015) have argued that x becomes an 
object for children when they can coordinate its relationship 
with other units in an equation—even a simple equation such 
as ax=b. Moreover, Tillema and Hackenberg (2011) have 
demonstrated how children symbolize mathematical objects 
and manipulate those symbols as a proxy for composing them 
through actions related to addition and multiplication. Thus, the 
characterization of mathematics as the objectification of action, 
with roots in Piaget’s structuralism, has support in both the 
history of mathematics and recent research in mathematics 
education. 
 

Conclusions 
 
“Pure logic and pure mathematics are forever capable of 
transcending experience… But as human action is that of an 
organism which is part of the physical universe, we understand 
also why these unlimited operatory combinations so often 
anticipate the experience, and why when they encounter each 
other there is harmony between the characteristics of the object 
and the operations of the subject.” Jean Piaget (1971/1970, p. 
72) 
 

Characterizing mathematics as the objectification of action 
helps explain the effectiveness of mathematics in the natural 
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sciences, while also distinguishing mathematics from them. 
Both the history of mathematics and studies of children’s 
mathematical development indicate that physical actions 
ground mathematics in the world we experience. Moreover, 
once these actions become objectified, we can act on them 
(often by composition, as in geometric construction and 
algebraic manipulation) to construct new actions that 
generalize and extend into conjectures about the world. This 
was certainly the case for Newton when he extended gravity 
into the heavens, but is it reasonable to expect such 
generalizations to work?  

Thanks to Gödel (1982/1962) and various paradoxes that 
have arisen in the history of mathematics, we know that 
mathematics does not provide ontological truth (Kline, 1959). 
Still, when models go awry, we always blame the underlying 
physical principles and never the long chains of mathematical 
arguments that led from those principles to the falsified 
prediction. We saw this play out at least three times in the 
history of elliptical orbits: circular orbits, elliptical orbits, and 
inverse square laws were questioned, but not the validity of the 
geometric constructions and algebraic manipulations. This is 
because, unlike other sciences, mathematics is about the 
actions we can perform, either physically or imaginatively, and 
not observed results of those actions. As a proxy for physical 
action and for actions on objectified actions, mathematics 
remains our most reliable way of reasoning.  

Galileo (see Kline, 1959) once described mathematics as 
the language of the universe. Living at a time when he and 
other scientists were paradigmatically transforming the world 
with parabolas and ellipses, his view was easily defensible. 
However, the new shape of planetary motion proved as 
imperfect in describing the universe as the circles, spheres, and 
platonic solids that preceded it. If we are to think of 
mathematics as a language, it is a very human language indeed. 
Still, mathematics is distinct from all other human languages in 
that it describes necessary ways of operating—necessary 
because the operations arise from action and possible actions 
on those objectified actions.  
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Of course, in the history of the ellipse there are socio-
cultural factors at play too, such as Kepler’s study of optics, 
which made knowledge of ellipses and other conic sections 
readily available to him (though he was hesitant to use the 
ellipse because it seemed too simple to have been missed by 
others) (Darling, 2006). Thus, we can think of mathematics as a 
culturally-based body of knowledge, but again this body of 
knowledge is distinct. After all, mathematics is a cultural 
product that has enabled us to literally escape the world we 
know and land in new worlds.  

 
Implications for Mathematics Education 

 
Characterizing mathematics as the objectification of action 

not only helps explain the effectiveness of mathematics in the 
natural sciences, but also the value of pedagogical practices 
that leverage students’ actions. For example, we know that 
manipulatives are effective in supporting mathematical 
development, especially among younger students (Sowell, 
1989). This efficacy is easily understood when we consider that 
young children are constructing their first mathematical 
objects, and that they do so on the basis of coordinated physical 
activity (Piaget & Inhelder, 1967). Sometimes educators 
conflate the roles of manipulatives and visual aids (Moyer, 
2001), but to support mathematical development we need to 
attend to the actions students perform on these figurative 
materials more so than the formal concepts they might 
represent.  

We might also consider how the role of manipulatives 
changes for older students who can rely more upon imagined 
activity and previously constructed objects for constructing 
new mathematical objects. After all, objectifying action does 
not end with the internalization and organization of coordinated 
physical activity; the nature of mathematics allows for level 
upon level of reorganization. We see this in students’ 
development of multiplication as repeated addition, and 
exponentiation as repeated multiplication. But for students to 
generalize these developments to e*π (or even e2πi), for 
instance, actions of repeated addition (or multiplication) must 
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be reorganized in ways that may not have physical analogs. 
Successful instructional approaches leverage more abstract 
actions involving the coordination of covarying quantities (e.g., 
Abrahamson, Trninic, Gutiérrez, Huth, & Lee, 2011) or 
mapping one structure to another (e.g., Confrey & Smith, 
1995).  

When researchers argue for direct instruction, they often 
rely on theoretical frameworks that do not account for 
mathematics as a unique domain of knowledge and learning 
(e.g., Kirschner, Sweller, & Clark, 2006). They focus on 
figurative aspects of mathematics without recognizing that 
those figures (e.g., algebraic symbols) serve as proxies for 
objectified mental actions and that their manipulation serves as 
a proxy for further action on those objects. The danger in 
ignoring the role of mental actions and their objectification is 
that we might teach students to manipulate symbols that have 
no content, in ways that have no meaning. Effective instruction 
begins with attention to the mathematical objects students have 
objectified and the mental actions students have available to act 
upon them. Here, I have argued that active learning is more 
than a preferred pedagogy, it constitutes the very nature of 
mathematics.   
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